mirror of
https://github.com/OpenCMT/uLib.git
synced 2025-12-06 15:31:31 +01:00
[uLib Geometry]
non working version! + adds ProgrammableAccessor + renaming of some Image structures ...
This commit is contained in:
152
src/Math/VoxImageFilterBilateral.hpp
Normal file
152
src/Math/VoxImageFilterBilateral.hpp
Normal file
@@ -0,0 +1,152 @@
|
||||
/*//////////////////////////////////////////////////////////////////////////////
|
||||
// CMT Cosmic Muon Tomography project //////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Copyright (c) 2014, Universita' degli Studi di Padova, INFN sez. di Padova
|
||||
All rights reserved
|
||||
|
||||
Authors: Andrea Rigoni Garola < andrea.rigoni@pd.infn.it >
|
||||
|
||||
------------------------------------------------------------------
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 3.0 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library.
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////*/
|
||||
|
||||
|
||||
|
||||
#ifndef VOXIMAGEFILTERBILATERAL_HPP
|
||||
#define VOXIMAGEFILTERBILATERAL_HPP
|
||||
|
||||
#include <Math/Dense.h>
|
||||
#include "Math/VoxImage.h"
|
||||
#include "VoxImageFilter.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///// VOXIMAGE FILTER LINEAR /////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace uLib {
|
||||
|
||||
|
||||
template <typename VoxelT>
|
||||
class VoxFilterAlgorithmBilateral :
|
||||
public VoxImageFilter<VoxelT, VoxFilterAlgorithmBilateral<VoxelT> > {
|
||||
public:
|
||||
typedef VoxImageFilter<VoxelT, VoxFilterAlgorithmBilateral<VoxelT> > BaseClass;
|
||||
VoxFilterAlgorithmBilateral(const Vector3i &size) : BaseClass(size) {
|
||||
m_sigma = 1;
|
||||
}
|
||||
|
||||
float Evaluate(const VoxImage<VoxelT> &buffer, int index)
|
||||
{
|
||||
const Vector<VoxelT> &vbuf = buffer.ConstData();
|
||||
const Vector<VoxelT> &vker = this->m_KernelData.ConstData();
|
||||
int vox_size = vbuf.size();
|
||||
int ker_size = vker.size();
|
||||
int pos;
|
||||
float conv = 0, ksum = 0;
|
||||
float gamma_smooth;
|
||||
for (int ik = 0; ik < ker_size; ++ik) {
|
||||
// if (ik==this->m_KernelData.GetCenterData()) continue;
|
||||
pos = index + vker[ik].Count - vker[this->m_KernelData.GetCenterData()].Count;
|
||||
pos = (pos + vox_size) % vox_size;
|
||||
gamma_smooth = compute_gauss( fabs(vbuf[index].Value - vbuf[pos].Value) * 1.E6 );
|
||||
conv += vbuf[pos].Value * vker[ik].Value * gamma_smooth;
|
||||
ksum += vker[ik].Value * gamma_smooth;
|
||||
}
|
||||
return conv / ksum;
|
||||
}
|
||||
|
||||
inline void SetIntensitySigma(const float s) { m_sigma = s; }
|
||||
|
||||
private:
|
||||
inline float compute_gauss(const float x) {
|
||||
return 1/(sqrt(2*M_PI)* m_sigma) * exp(-0.5*(x*x)/(m_sigma*m_sigma));
|
||||
}
|
||||
|
||||
Scalarf m_sigma;
|
||||
};
|
||||
|
||||
|
||||
template <typename VoxelT>
|
||||
class VoxFilterAlgorithmBilateralTrim :
|
||||
public VoxImageFilter<VoxelT, VoxFilterAlgorithmBilateralTrim<VoxelT> > {
|
||||
|
||||
typedef std::pair<float,float> FPair;
|
||||
|
||||
struct KernelSortAscending
|
||||
{
|
||||
bool operator()(const FPair& e1, const FPair& e2)
|
||||
{ return e1.second < e2.second; }
|
||||
};
|
||||
|
||||
public:
|
||||
typedef VoxImageFilter<VoxelT, VoxFilterAlgorithmBilateralTrim<VoxelT> > BaseClass;
|
||||
VoxFilterAlgorithmBilateralTrim(const Vector3i &size) : BaseClass(size) {
|
||||
m_sigma = 1;
|
||||
mAtrim = 0;
|
||||
mBtrim = 0;
|
||||
}
|
||||
|
||||
float Evaluate(const VoxImage<VoxelT> &buffer, int index)
|
||||
{
|
||||
const Vector<VoxelT> &vbuf = buffer.ConstData();
|
||||
const Vector<VoxelT> &vker = this->m_KernelData.ConstData();
|
||||
int img_size = vbuf.size();
|
||||
int ker_size = vker.size();
|
||||
int pos;
|
||||
|
||||
|
||||
|
||||
Vector<FPair> mfh(ker_size);
|
||||
for (int i = 0; i < ker_size; ++i)
|
||||
mfh[i].first = vker[i].Value; // kernel value in first
|
||||
for (int ik = 0; ik < ker_size; ik++) {
|
||||
pos = index + vker[ik].Count - vker[this->m_KernelData.GetCenterData()].Count;
|
||||
pos = (pos + img_size) % img_size;
|
||||
mfh[ik].second = vbuf[pos].Value; // image value in second
|
||||
}
|
||||
std::sort(mfh.begin(), mfh.end(), KernelSortAscending());
|
||||
|
||||
float conv = 0, ksum = 0;
|
||||
float gamma_smooth;
|
||||
// for (int ik = 0; ik < mAtrim; ik++)
|
||||
// ksum += mfh[ik].first;
|
||||
for (int ik = mAtrim; ik < ker_size - mBtrim; ik++) {
|
||||
gamma_smooth = compute_gauss( fabs(vbuf[index].Value - mfh[ik].second) * 1.E6 );
|
||||
conv += mfh[ik].first * mfh[ik].second * gamma_smooth;
|
||||
ksum += mfh[ik].first * gamma_smooth;
|
||||
}
|
||||
// for (int ik = ker_size - mBtrim; ik < ker_size; ik++)
|
||||
// ksum += mfh[ik].first;
|
||||
|
||||
return conv / ksum;
|
||||
}
|
||||
|
||||
inline void SetIntensitySigma(const float s) { m_sigma = s; }
|
||||
inline void SetABTrim(int a, int b) { mAtrim = a; mBtrim = b; }
|
||||
|
||||
private:
|
||||
inline float compute_gauss(const float x) {
|
||||
return 1/(sqrt(2*M_PI)* m_sigma) * exp(-0.5*(x*x)/(m_sigma*m_sigma));
|
||||
}
|
||||
|
||||
Scalarf m_sigma;
|
||||
int mAtrim;
|
||||
int mBtrim;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // VOXIMAGEFILTERBILATERAL_HPP
|
||||
Reference in New Issue
Block a user