/*////////////////////////////////////////////////////////////////////////////// // CMT Cosmic Muon Tomography project ////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// Copyright (c) 2014, Universita' degli Studi di Padova, INFN sez. di Padova All rights reserved Authors: Andrea Rigoni Garola < andrea.rigoni@pd.infn.it > ------------------------------------------------------------------ This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3.0 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library. //////////////////////////////////////////////////////////////////////////////*/ #ifndef VOXIMAGEFILTERBILATERAL_HPP #define VOXIMAGEFILTERBILATERAL_HPP #include #include "Math/VoxImage.h" #include "VoxImageFilter.h" //////////////////////////////////////////////////////////////////////////////// ///// VOXIMAGE FILTER LINEAR ///////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// namespace uLib { template class VoxFilterAlgorithmBilateral : public VoxImageFilter > { public: typedef VoxImageFilter > BaseClass; VoxFilterAlgorithmBilateral(const Vector3i &size) : BaseClass(size) { m_sigma = 1; } float Evaluate(const VoxImage &buffer, int index) { const Vector &vbuf = buffer.ConstData(); const Vector &vker = this->m_KernelData.ConstData(); int vox_size = vbuf.size(); int ker_size = vker.size(); int pos; float conv = 0, ksum = 0; float gamma_smooth; for (int ik = 0; ik < ker_size; ++ik) { // if (ik==this->m_KernelData.GetCenterData()) continue; pos = index + vker[ik].Count - vker[this->m_KernelData.GetCenterData()].Count; pos = (pos + vox_size) % vox_size; gamma_smooth = compute_gauss( fabs(vbuf[index].Value - vbuf[pos].Value) * 1.E6 ); conv += vbuf[pos].Value * vker[ik].Value * gamma_smooth; ksum += vker[ik].Value * gamma_smooth; } return conv / ksum; } inline void SetIntensitySigma(const float s) { m_sigma = s; } private: inline float compute_gauss(const float x) { return 1/(sqrt(2*M_PI)* m_sigma) * exp(-0.5*(x*x)/(m_sigma*m_sigma)); } Scalarf m_sigma; }; template class VoxFilterAlgorithmBilateralTrim : public VoxImageFilter > { typedef std::pair FPair; struct KernelSortAscending { bool operator()(const FPair& e1, const FPair& e2) { return e1.second < e2.second; } }; public: typedef VoxImageFilter > BaseClass; VoxFilterAlgorithmBilateralTrim(const Vector3i &size) : BaseClass(size) { m_sigma = 1; mAtrim = 0; mBtrim = 0; } float Evaluate(const VoxImage &buffer, int index) { const Vector &vbuf = buffer.ConstData(); const Vector &vker = this->m_KernelData.ConstData(); int img_size = vbuf.size(); int ker_size = vker.size(); int pos; Vector mfh(ker_size); for (int i = 0; i < ker_size; ++i) mfh[i].first = vker[i].Value; // kernel value in first for (int ik = 0; ik < ker_size; ik++) { pos = index + vker[ik].Count - vker[this->m_KernelData.GetCenterData()].Count; pos = (pos + img_size) % img_size; mfh[ik].second = vbuf[pos].Value; // image value in second } std::sort(mfh.begin(), mfh.end(), KernelSortAscending()); float conv = 0, ksum = 0; float gamma_smooth; // for (int ik = 0; ik < mAtrim; ik++) // ksum += mfh[ik].first; for (int ik = mAtrim; ik < ker_size - mBtrim; ik++) { gamma_smooth = compute_gauss( fabs(vbuf[index].Value - mfh[ik].second) * 1.E6 ); conv += mfh[ik].first * mfh[ik].second * gamma_smooth; ksum += mfh[ik].first * gamma_smooth; } // for (int ik = ker_size - mBtrim; ik < ker_size; ik++) // ksum += mfh[ik].first; return conv / ksum; } inline void SetIntensitySigma(const float s) { m_sigma = s; } inline void SetABTrim(int a, int b) { mAtrim = a; mBtrim = b; } private: inline float compute_gauss(const float x) { return 1/(sqrt(2*M_PI)* m_sigma) * exp(-0.5*(x*x)/(m_sigma*m_sigma)); } Scalarf m_sigma; int mAtrim; int mBtrim; }; } #endif // VOXIMAGEFILTERBILATERAL_HPP